DashAI.back.models.RandomForestRegression
- class RandomForestRegression(**kwargs)[source]
Scikit-learn’s Ridge Regression wrapper for DashAI.
Methods
__init__
(**kwargs)apply
(X)Apply trees in the forest to X, return leaf indices.
decision_path
(X)Return the decision path in the forest.
fit
(x_train, y_train)Fit the estimator.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
get_schema
()Generates the component related Json Schema.
load
(filename)Load the model of the specified path.
predict
(x_pred)Make a prediction with the model.
save
(filename)Save the model in the specified path.
score
(X, y[, sample_weight])Return the coefficient of determination of the prediction.
set_fit_request
(*[, x_train, y_train])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_predict_request
(*[, x_pred])Request metadata passed to the
predict
method.set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.validate_and_transform
(raw_data)It takes the data given by the user to initialize the model and returns it with all the objects that the model needs to work.
Attributes
COMPATIBLE_COMPONENTS
TYPE
base_estimator_
Estimator used to grow the ensemble.
feature_importances_
The impurity-based feature importances.