DashAI.back.models.RandomForestRegression

class RandomForestRegression(**kwargs)[source]

Scikit-learn’s Ridge Regression wrapper for DashAI.

__init__(**kwargs) None[source]

Methods

__init__(**kwargs)

apply(X)

Apply trees in the forest to X, return leaf indices.

decision_path(X)

Return the decision path in the forest.

fit(x_train, y_train)

Fit the estimator.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

get_schema()

Generates the component related Json Schema.

load(filename)

Load the model of the specified path.

predict(x_pred)

Make a prediction with the model.

save(filename)

Save the model in the specified path.

score(X, y[, sample_weight])

Return the coefficient of determination of the prediction.

set_fit_request(*[, x_train, y_train])

Request metadata passed to the fit method.

set_params(**params)

Set the parameters of this estimator.

set_predict_request(*[, x_pred])

Request metadata passed to the predict method.

set_score_request(*[, sample_weight])

Request metadata passed to the score method.

validate_and_transform(raw_data)

It takes the data given by the user to initialize the model and returns it with all the objects that the model needs to work.

Attributes

COMPATIBLE_COMPONENTS

TYPE

base_estimator_

Estimator used to grow the ensemble.

feature_importances_

The impurity-based feature importances.