DashAI.back.models.GradientBoostingR
- class GradientBoostingR(**kwargs)[source]
Scikit-learn’s Ridge Regression wrapper for DashAI.
Methods
__init__(**kwargs)apply(X)Apply trees in the ensemble to X, return leaf indices.
calculate_metrics([split, level, log_index, ...])Calculate and save metrics for a given data split and level.
fit(X, y[, sample_weight, monitor])Fit the gradient boosting model.
get_metadata_routing()Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
get_schema()Generates the component related Json Schema.
load(filename)Load the model of the specified path.
predict(x_pred)Make a prediction with the model.
prepare_dataset(dataset[, is_fit])Apply the model transformations to the dataset.
prepare_output(dataset[, is_fit])Prepare output targets using Label encoding.
save(filename)Save the model in the specified path.
score(X, y[, sample_weight])Return coefficient of determination on test data.
set_fit_request(*[, monitor, sample_weight])Configure whether metadata should be requested to be passed to the
fitmethod.set_params(**params)Set the parameters of this estimator.
set_predict_request(*[, x_pred])Configure whether metadata should be requested to be passed to the
predictmethod.set_score_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
scoremethod.staged_predict(X)Predict regression target at each stage for X.
train(x_train, y_train[, x_validation, ...])Train the model with the provided data.
validate_and_transform(raw_data)It takes the data given by the user to initialize the model and returns it with all the objects that the model needs to work.
Attributes
CATEGORICAL_ENCODINGCOLORCOMPATIBLE_COMPONENTSDISPLAY_NAMETYPEfeature_importances_The impurity-based feature importances.