DashAI.back.models.DecisionTreeClassifier
- class DecisionTreeClassifier(**kwargs)[source]
Scikit-learn’s Decision Tree Classifier wrapper for DashAI.
Methods
__init__
(**kwargs)apply
(X[, check_input])Return the index of the leaf that each sample is predicted as.
cost_complexity_pruning_path
(X, y[, ...])Compute the pruning path during Minimal Cost-Complexity Pruning.
decision_path
(X[, check_input])Return the decision path in the tree.
fit
(x_train, y_train)Fit the estimator.
get_depth
()Return the depth of the decision tree.
get_metadata_routing
()Get metadata routing of this object.
get_n_leaves
()Return the number of leaves of the decision tree.
get_params
([deep])Get parameters for this estimator.
get_schema
()Generates the component related Json Schema.
load
(filename)Load the model of the specified path.
predict
(x_pred)Make a prediction with the model.
predict_log_proba
(X)Predict class log-probabilities of the input samples X.
predict_proba
(X[, check_input])Predict class probabilities of the input samples X.
save
(filename)Save the model in the specified path.
score
(X, y[, sample_weight])Return the mean accuracy on the given test data and labels.
set_fit_request
(*[, x_train, y_train])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_predict_proba_request
(*[, check_input])Request metadata passed to the
predict_proba
method.set_predict_request
(*[, x_pred])Request metadata passed to the
predict
method.set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.validate_and_transform
(raw_data)It takes the data given by the user to initialize the model and returns it with all the objects that the model needs to work.
Attributes
COMPATIBLE_COMPONENTS
TYPE
feature_importances_
Return the feature importances.