Source code for DashAI.back.tasks.text_classification_task

from typing import List, Union

from datasets import DatasetDict

from DashAI.back.dataloaders.classes.dashai_dataset import (
    DashAIDataset,
)
from DashAI.back.tasks.classification_task import ClassificationTask
from DashAI.back.types.categorical import Categorical
from DashAI.back.types.value_types import Text


[docs] class TextClassificationTask(ClassificationTask): """Base class for Text Classification Task.""" metadata: dict = { "inputs_types": [Text], "outputs_types": [Categorical], "inputs_cardinality": 1, "outputs_cardinality": 1, } DESCRIPTION: str = """ Text classification is an essential Natural Language Processing (NLP) task that involves automatically assigning pre-defined categories or labels to text documents based on their content. It serves as the foundation for applications like sentiment analysis, spam filtering, topic classification, and document categorization. """ DISPLAY_NAME: str = "Text Classification" def prepare_for_task( self, dataset: Union[DatasetDict, DashAIDataset], input_columns: List[str], output_columns: List[str], ) -> DashAIDataset: """Convert the dataset to DashAIDataset and check the columns types A copy of the dataset is created. Parameters ---------- dataset : Union[DatasetDict, DashAIDataset] Dataset to be changed Returns ------- DashAIDataset Dataset with the new types """ dashai_dataset = super().prepare_for_task( dataset, input_columns, output_columns ) return dashai_dataset