Source code for DashAI.back.metrics.regression.rmse

"""DashAI RMSE regression metric implementation."""

import numpy as np
from sklearn.metrics import mean_squared_error

from DashAI.back.dataloaders.classes.dashai_dataset import DashAIDataset
from DashAI.back.metrics.regression_metric import RegressionMetric, prepare_to_metric


[docs]class RMSE(RegressionMetric): """Root Mean Squared Error metric for regression tasks.""" @staticmethod def score(true_values: DashAIDataset, predicted_values: np.ndarray) -> float: """Calculate the RMSE between true values and predicted values. Parameters ---------- true_values : DashAIDataset A DashAI dataset with true values. predicted_values : np.ndarray A one-dimensional array with the predicted values for each instance. Returns ------- float RMSE score between true values and predicted values """ true_values, pred_values = prepare_to_metric(true_values, predicted_values) return mean_squared_error(true_values, pred_values, squared=False)