Source code for DashAI.back.metrics.regression.mae

"""DashAI MAE regression metric implementation."""

import numpy as np
from sklearn.metrics import mean_absolute_error

from DashAI.back.dataloaders.classes.dashai_dataset import DashAIDataset
from DashAI.back.metrics.regression_metric import RegressionMetric, prepare_to_metric


[docs]class MAE(RegressionMetric): """Mean Absolute Error metric for regression tasks.""" @staticmethod def score(true_values: DashAIDataset, predicted_values: np.ndarray) -> float: """Calculate the MAE between true values and predicted values. Parameters ---------- true_values : DashAIDataset A DashAI dataset with true values. predicted_values : np.ndarray A one-dimensional array with the predicted values for each instance. Returns ------- float MAE score between true values and predicted values """ true_values, pred_values = prepare_to_metric(true_values, predicted_values) return mean_absolute_error(true_values, pred_values)