Source code for DashAI.back.converters.scikit_learn.select_fpr

import pyarrow as pa
from sklearn.feature_selection import SelectFpr as SelectFprOperation

from DashAI.back.converters.category.feature_selection import FeatureSelectionConverter
from DashAI.back.converters.sklearn_wrapper import SklearnWrapper
from DashAI.back.core.schema_fields import float_field, schema_field
from DashAI.back.core.schema_fields.base_schema import BaseSchema
from DashAI.back.types.dashai_data_type import DashAIDataType
from DashAI.back.types.value_types import Float


class SelectFprSchema(BaseSchema):
    alpha: schema_field(
        float_field(ge=0.0, le=1.0),
        0.05,
        "The highest p-value for features to be kept.",
    )  # type: ignore


[docs] class SelectFpr(FeatureSelectionConverter, SklearnWrapper, SelectFprOperation): """SciKit-Learn's SelectFpr wrapper for DashAI.""" SCHEMA = SelectFprSchema DESCRIPTION = "Filter: Select features according to a false positive rate test." SUPERVISED = True DISPLAY_NAME = "Select FPR" IMAGE_PREVIEW = "select_fpr.png" CATEGORY = "Feature Selection" metadata = {}
[docs] def __init__(self, **kwargs): super().__init__(**kwargs)
def get_output_type(self, column_name: str = None) -> DashAIDataType: """Returns Float64 as the output type for selected features.""" return Float(arrow_type=pa.float64())