Source code for DashAI.back.converters.scikit_learn.missing_indicator

from sklearn.impute import MissingIndicator as MissingIndicatorOperation

from DashAI.back.api.utils import cast_string_to_type
from DashAI.back.converters.sklearn_wrapper import SklearnWrapper
from DashAI.back.core.schema_fields import (
    bool_field,
    enum_field,
    float_field,
    int_field,
    none_type,
    schema_field,
    string_field,
    union_type,
)
from DashAI.back.core.schema_fields.base_schema import BaseSchema


class MissingIndicatorSchema(BaseSchema):
    missing_values: schema_field(
        none_type(
            union_type(int_field(), union_type(float_field(), string_field()))
        ),  # int, float, str, np.nan or None
        None,  # np.nan,
        "The placeholder for the missing values.",
    )  # type: ignore
    features: schema_field(
        enum_field(["missing-only", "all"]),
        None,
        "The features to consider for missing values.",
    )  # type: ignore
    # sparse: Pandas output does not support sparse data. Set sparse=False
    error_on_new: schema_field(
        bool_field(),
        True,
        "Whether to raise an error on new missing values.",
    )  # type: ignore


[docs] class MissingIndicator(SklearnWrapper, MissingIndicatorOperation): """Scikit-learn's MissingIndicator wrapper for DashAI.""" SCHEMA = MissingIndicatorSchema DESCRIPTION = "Binary indicators for missing values."
[docs] def __init__(self, **kwargs): self.missing_values = kwargs.pop("missing_values", None) self.missing_values = cast_string_to_type(self.missing_values) kwargs["missing_values"] = self.missing_values # Pandas output does not support sparse data. Set sparse=False self.sparse = kwargs.pop("sparse", False) kwargs["sparse"] = self.sparse super().__init__(**kwargs)